Sistemi Intelligenti Avanzati Corso di Laurea in Informatica, A.A. 2020-2021 Università degli Studi di Milan

Search algorithms for planning \vert)

Matteo Luperto

Dipartimento di Informatica matteo.luperto@unimi.it

Summing up

 b branching factor, q depth of the shallowest solution, m maximum depth of search tree, l depth limit

Running example

• To present the various search algorithms, we will use this *problem instance* as our running example

• It might be useful to think it as a map, but keep in mind that this interpretation does not hold for every instance

Informed vs non-informed search

- Besides its own rules, any search algorithm decides where to search next by leveraging some knowledge
- **Non-informed** search uses only knowledge specified at problem-definition time (e.g., goal and start nodes, edge costs), just like we saw in the previous examples
- An **informed** search might go beyond such knowledge
- Idea: using an estimate of how far a given node is from the goal
- Such an estimate is often called a **heuristic**

Estimate of the cost of the optimal path from node v to the goal: $h(v)$

Example: going home from the CS department with METRO

Informed Search method

Informed Search method

Using an heuristic: Greedy Best-First Search

- Let's use domain knowledge: perform a UCS, but instead of considering costs, we consider an heuristic $h(n)$ that estimates, for each node the cost "to go" to the solution from there
- Greedy approach: we expand the goal that seems closest to the solution

 $h(n) \leq$ Cost of the minimum path from n to the goal

• The idea is to go as fast as possible towards the solution

Running example

• To present the various search algorithms, we will use this *problem instance* as our running example

• It might be useful to think it as a map, but keep in mind that this interpretation does not hold for every instance

A 10

- We have a solution, and fast but…is it optimal?
- Is this search strategy complete? Answer: Yes for finite spaces

If we call m the maximum depth of the search space

- Time complexity: $O(b^m)$
- Space complexity: $O(b^m)$

F 7

node v

 \bf{A}

B $\rm C$ D

 ${\bf E}$

 ${\bf F}$

 $\rm G$

 $h(v)$

10

3

 θ

 $\overline{7}$

 $\overline{2}$

E ©

0

- We have a solution, and fast but... is it optimal?
- Is this search strategy complete? Answer: Yes for finite spaces

If we call m the maximum depth of the search space

- Time complexity: $O(b^m)$
- Space complexity: $O(b^m)$

- The informed version of UCS is called A^*
- Very popular search algorithm
- It was born in the early days of mobile robotics when, in 1968, Nilsson, Hart, and Raphael had to face a practical problem with Shakey (one of the ancestors of today's mobile robots)

С

Ε

G

• The idea behind A* is simple: perform a UCS, but instead of considering accumulated costs consider the following:

Heuristic

\n
$$
("cost-to-go")
$$
\n
$$
\downarrow
$$
\n
$$
f(n) = g(n) + h(n)
$$
\nCost accumulated on the path to n

\n
$$
("cost-to-cone")
$$

• To guarantee that the search is sound and complete we need to require that the heuristic is **admissible**: it is an optimistic estimate or, more formally:

 $\Gamma(h(n) \leq C$ ost of the minimum path from n to the goal

• If the heuristic is not admissible we might discard a path that could actually turn out to be better that the best candidate found so far

F

 $\frac{E}{F}$

 \overline{G}

 $\boldsymbol{0}$ $\overline{7}$

 $\overline{2}$

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:

A 0+10=10

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:

 $\mathbf 1$

 $\overline{0}$

 Ω

100

 $\overline{0}$

 $\mathbf D$

 ${\bf E}$

 $\mathbf F$

 G

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:

- Problem: if we work with an extended list, admissibility is not enough!
- Let's consider this "pathological" instance:

- We need to require a stronger property: **consistency**
- For any connected nodes u and v: $h(v) \leq c(v, u) + h(u)$
- A consistent heuristic is also admissible (as it is a stricter requirement)

• It's a sort of triangle inequality, let's reconsider our pathological instance:

Optimality of A*

Hypotheses:

- 1. A* selects from the frontier a node G that has been generated through a path p
- 2. p is not the optimal path to G

Given 2 and the frontier separation property, we know that there must exist a node X on the frontier that is on a better path to G

f is non-decreasing: $f(G) \ge f(X)$

A* selected G: $f(G) < f(X)$

When A selects a node for expansion, it discovers the optimal path to that node*

Building good heuristics

- Good heuristics allows to limit the number of states explored before finding the solution
- The "larger heuristics are better" principle is not a methodology to define a good heuristic
- Such a task, seems to be rather complex: heuristics deeply leverage the inner structure of a problem and have to satisfy a number of constraints (admissibility, consistency, efficiency) whose guarantee is not straightforward
- When we adopted the straight-line distance in our route finding examples, we were sure it was a good heuristic
- Would it be possible to generalize what we did with the straight-line distance to define a method to *compute* heuristics for a problem?
- Good news: the answer is yes

Evaluating heuristics

• How to evaluate if an heuristic is good?

- A* will expand all nodes v such that: $f(v) < g^*(goal) \longrightarrow h(v) < g^*(goal) g(v)$
- If, for any node v $h_1(v) \leq h_2(v)$

then A* with h_2 will not expand more nodes than A* with h_1 , in general h_2 is better (provided that is consistent and can be computed by an efficient algorithm)

• If we have two consistent heuristics h_1 and h_2 we can define $\mathcal{L}(h_3(v) = \max\{h_2(v), h_1(v)\}$ istemi Intelligenti Avanzati, 2020/21 161 161

Relaxed problems

• Given a problem P, a relaxation of P is an easier version of P where some constraints have been dropped

• In our route finding problems removing the constraint that movements should be over roads (links) means that some costs pass from an infinite value to a finite one (the straight-line distance) Sistemi Intelligenti Avanzati, 2020/21 162

Relaxed problems

• Idea:

Apply A* to every node and get Define a relaxation of P: Set $h(v) = h^*(v)$ in the original problem and run A*

- We can easily define a problem relaxation, it's just matter of removing constraints/rewriting costs
- But what happens to soundness and completeness of A*?

 $\hat{h}^*(v) \leq \hat{g}(v, u) + \hat{h}^*(u)$ Path costs are optimal

 $h(v) \leq \hat{g}(v, u) + h(u)$ From our idea

 $\hat{g}(v, u) \leq g(v, u)$

From the definition of relaxation

 $h(v) \leq g(v, u) + h(u)$

h is consistent

- Average solution: 22 steps and branching factor $3 = 10^{10}$ states using tree search
- h_1 = number of misplaced tiles ($h_1 = 8$ for the example)
- h_2 = sum of Manhattan distance of each tile from goal ($h_1 = 18$ for the example)
- Both heuristics are admissible (true solution costs 26)

How to evaluate A* and h ? Compute the effective branching factor b^*

Start State

Goal State

- IDS = Iterative Deepening Search
- h_2 performs better than h_1 as it provides a higher estimate (still admissible and consistent, so lower than the true solution cost).

• A tile can move from square A to square B if A is horizontally or vertically adjacent to B **and** B is blank

Relaxed problems:

- 1. A tile can move from square A to square B if A is adjacent to B
- 2. A tile can move from square A to square B if B is blank
- 3. A tile can move from square A to square B

Other heuristics can be derived from subproblems, as removing some of the tiles and solving an easier game: cost to solve the easier game = h

Other alternative to find heuristics are to:

- Learn from experience: play many 8-puzzles, learn a good heuristic e.g., neural nets
- Use domain knowledge to extract features: e.g. "number of misplaced tiles"

Informed vs non-informed search

- We can enrich DFS and BFS to obtain their an informed versions
- Both search methods break ties in lexicographical order, but it seems reasonable to do that in favor of nodes that are believed to be closer to the goal
- **Hill climbing**
	- A DFS where ties are broken in favor the node with smallest h
- **Beam** (of width w)
	- A BFS where at each level we keep the first w nodes in increasing order of h

References

- Russel S., Norvig P., Artificial Intelligence, a Modern Approach, III ED
- LaValle, SM., Planning Algorithms <http://lavalle.pl/planning/>
- <https://qiao.github.io/PathFinding.js/visual/>
- [https://www.redblobgames.com/pathfinding/a](https://www.redblobgames.com/pathfinding/a-star/introduction.html)star/introduction.html

Sistemi Intelligenti Avanzati Corso di Laurea in Informatica, A.A. 2020-2021 Università degli Studi di Milan

Matteo Luperto Dipartimento di Informatica

matteo.luperto@unimi.it